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Abstract

The 2008 financial crisis has required new methods for portfolios diversification. In the 
same year, Maillard, Roncalli and Teiletche (2008) suggested a method that maximizes the 
diversification which is called Risk Parity or Equally weighted Risk Contribution strategy. 
The most common method to use the Risk Parity approach is to use the standard deviation 
as risk measure. In this paper, we describe a method to apply Risk Parity to the Expected 
shortfall or also known as Conditional Value at Risk using a numerical approximation from 
discrete historical observation. The expected shortfall can use the advantage of being a 
coherent measure, not to forget that it is also a convex measure, which is very useful in the 
optimization. Another advantage is that the Risk Parity approach doesn’t need the estimation 
of the expected return as an input. Usually, the models that require the expected returns, such 
as the Markowitz, model have higher concentration in a smaller number of assets. This will 
bring a very high turnover and drawdown of the performance. The performance analysis in 
this paper is applied in mixed portfolios composed by stock, bonds and commodities. They 
show also how better this model performs in case of the crisis. We also identify not only the 
strong points but also the week points of these models.

Keywords: Numerical approximation, application, Risk Parity, Conditional Value, mixed 
portfolios.

1. Introduction

The high volatility of the market of after the COVID pandemic and the Russian 
Ukrainian Crisis has pushed the investors in finding other ways to diversify their 
financial portfolio, even more if they invest in commodities like grain or crude oil. 
Using models like the most famous Mean-Variance (Markowitz,1952) or the Expected 
shortfall will bring high concentration on a small number of assets and perform poorly 
in the out of sample period. These models are also based on the expected returns
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that are typically estimated based on historical data or financial models. However, 
these estimates are subject to uncertainty and can be influenced by various factors 
such as market conditions, economic events, and changes in investor sentiment. If the 
expected returns used in the portfolio model turn out to be inaccurate, it can lead to 
suboptimal portfolio allocations and performance. Portfolio models that heavily rely 
on expected returns can be highly sensitive to changes in those assumptions (Merton 
1980). Small variations in expected returns can have a significant impact on portfolio 
allocations and outcomes. This sensitivity can make the portfolio model more 
susceptible to errors and less robust in different market conditions.  
Black & Litterman (1990) uses a Bayesian approach to achieve and change the 
estimated returns. Today there are many advanced models for forecasting using 
different simulation techniques. For portfolio selection under Risk Parity method, the 
first idea was introduced by Qian (2005) and from it the idea of equally risk 
contribution in proportion of stock and bond to achieve the long-term risk premium. 
He shows that this method is more efficient than the portfolio created from 60 per 
cent stocks and 40 per cent bonds. The introduction as risk parity models was 
formulated by Maillard, Roncalli and Teiletche (2008) using the standard deviation 
as measure of risk. In their paper they proved the existence of the uniqueness of the 
portfolio, also that the riskiness of Risk Parity models is between the minimum 
variance and the uniform (or naïve portfolio).  
Risk Parity approaches are frequently used to allocate the risk of a portfolio by 
decomposing the total portfolio risk into the risk contribution of each component in 
the same quantity. One of the main advantages of the Risk Parity approach is that it 
does not require the estimation of the expected returns.  
In this paper we describe a numerical method to use the Risk Parity to the expected 
shortfall or Conditional Value at Risk 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑥𝑥). The 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑥𝑥) is a coherent and 
convex method, so it is possible to use the Euler decomposition for first order 
homogeneous functions (Artzner, 1999). This decomposition needs the calculation of 
the derivatives of risk measure. Stefanovits (2009) applies the equally risk 
contribution to the expected shortfall in case of standardized multivariate 
distribution, using a Gaussian kernel estimation. He implemented Risk Parity 
approach to Expected Shortfall assuming normally or t-student data in a parametric 
approach. In this paper we show that we can apply the Risk Parity model with 
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑥𝑥) as a risk measure to any (real) return distribution. This is possible with 
approximation methods in the calculation of the partial derivatives of the Conditional 
Value at Risk (Tasche, 2000). To have a complete pattern, we compare the Risk Parity 
strategies with different risk measures (standard deviation and Conditional Value at 
Risk). The results are very similar but the time of computation of Risk Parity with 
Conditional Value at Risk is significantly shorter. 
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The algorithms for the calculation of the weights of the optimal portfolios are 
developed in Matlab 2022a©, running in a Windows 10 operating system, in a 
computer with processor Intel (R) Core (TM) i7-7500U CPU @ 2.70- 2.90 GHz and 12 
GB of RAM that compute the algorithm in a very short time. The algorithm uses an 
interior point solution using limited number of iterations in the case of the Risk Parity 
model with 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑥𝑥). 
2. Research method 
In the process of the calculation of the weights with the Risk Parity using Conditional 
Value at Risk we need to calculate the existence of the partial derivatives of 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑥𝑥). 
For the consistence of the model, we need to impose some assumptions on the 
distribution of the random vector R = (r1, r2,.,,rn) . When we create a portfolio with n 
assets, each weight xi, in vector x = (x1, x2,..,,xn), we need to present sufficient 
conditions for quantile of the portfolio return 𝑋𝑋 = 𝑉𝑉′𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=1 to be differentiable 
respect to the weights 𝑥𝑥𝑖𝑖. These conditions rely on the existence of a conditional 
probability density function (pdf) of the i-th asset return 𝑟𝑟𝑖𝑖 given the others which is 
measured as follow: 
In the process of the calculation of the weights with the Risk Parity using Conditional 
Value at Risk we need to calculate the existence of the partial derivatives of . For the 
consistence of the model, we need to impose some assumptions on the distribution 
of the random vector R = (r1, r2,.,,rn) . When we create a portfolio with n assets, each 
weight xi, in vector x = (x1, x2,..,,xn), we need to present sufficient conditions for 
quantile of the portfolio return to be differentiable respect to the weights . These 
conditions rely on the existence of a conditional probability density function (pdf) of 
the i-th asset return  given the others which is measured as follow: 

𝑟𝑟𝑖𝑖,𝑡𝑡+1 = 𝑃𝑃𝑖𝑖,𝑡𝑡+1 − 𝑃𝑃𝑖𝑖,𝑡𝑡
𝑃𝑃𝑖𝑖,𝑡𝑡

 

Starting from the paper of Tasche (2000), the first problem to deal with is 
differentiating the quantile function 𝑞𝑞𝛼𝛼(𝑋𝑋), and form that, the expression of 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑥𝑥) 
partial derivatives. 
Definition 1 For the random vector R = (r1, r2,.....,rn) , r1 has a conditional density given 
(r2,.....,rn) if it exits a measurable function 𝜃𝜃: ℝ𝑛𝑛 ⟶ [0, ∞) such for that all 𝐴𝐴 ∈ ℬ(ℝ) 
we have 
 𝑃𝑃[𝑟𝑟1, ∈ 𝐴𝐴| 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛] = ∫ 𝜃𝜃𝐴𝐴 (𝑢𝑢, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)𝑑𝑑𝑢𝑢 
The existence of a joint pdf of R implies the existence of the conditional probability 
density function but not necessarily the other way is true. 
Lemma 1 assumes that 𝑟𝑟1 has a conditional density 𝜃𝜃 given (r2,.....,rn), where 
(𝑟𝑟1,r2,.....,rn) is a an ℝ𝑛𝑛-valued random vector. For any weight vector x = (x1, x2,.....,xn) ∈
ℝ\{0} × ℝ𝑛𝑛−1, we have: 
1. The random variable 𝑋𝑋 = ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=1  has a pdf given by the following absolutely 
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continuous functions 

𝑓𝑓𝑋𝑋(𝑢𝑢) = 1
𝑥𝑥1

𝐸𝐸 [𝜃𝜃 (𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] (1) 

2. if 𝑓𝑓𝑋𝑋(𝑢𝑢) > 0 we have almost surely for i=2,.....,n, and for 𝑢𝑢 ∈ ℝ 

𝐸𝐸[𝑟𝑟𝑖𝑖| ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 = u𝑛𝑛
𝑗𝑗=1 ] =

𝐸𝐸[𝑟𝑟1𝜃𝜃( 1
𝑥𝑥1

(𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2 ),𝑟𝑟2,.....,𝑟𝑟𝑛𝑛)]

𝐸𝐸[𝜃𝜃( 1
𝑥𝑥1

(𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2 ),𝑟𝑟2,.....,𝑟𝑟𝑛𝑛)]

 (1. a) 

3. if 𝑓𝑓𝑋𝑋(𝑢𝑢) > 0 we have almost surely for i=2,.....,n, and for 𝑢𝑢 ∈ ℝ 

𝐸𝐸[𝑟𝑟1| ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 = u𝑛𝑛
𝑗𝑗=1 ] =

𝐸𝐸[𝑢𝑢−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛
𝑖𝑖=2
𝑥𝑥1

𝜃𝜃( 1
𝑥𝑥1

(𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2 ),𝑟𝑟2,.....,𝑟𝑟𝑛𝑛)]

𝐸𝐸[𝜃𝜃( 1
𝑥𝑥1

(𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2 ),𝑟𝑟2,.....,𝑟𝑟𝑛𝑛)]

 (1. b) 

The point 1 of the Lemma says that if there is a conditional density of 𝑟𝑟1 given the 
other component, then subject of the condition 𝑥𝑥 ≠ 0 the distribution 𝑋𝑋 = 𝑅𝑅′𝑥𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=1  
is absolutely continuous with a density of point 1. 
Proof.  
1. Consider 𝑥𝑥1 > 0, then we can write: 

𝑃𝑃[𝑋𝑋 ≤ 𝑢𝑢] = 𝐸𝐸[1{𝑋𝑋≤𝑢𝑢}] = 𝐸𝐸[𝐸𝐸[1{𝑋𝑋≤𝑢𝑢}]|𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛] = 𝐸𝐸 [∫ 𝜃𝜃(𝑣𝑣, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)𝑑𝑑𝑣𝑣
𝑢𝑢−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=2
𝑥𝑥1−∞ ] =

𝐸𝐸 [∫ 1
𝑥𝑥1

𝜃𝜃 (𝑣𝑣−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛
𝑖𝑖=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛) 𝑑𝑑𝑣𝑣𝑢𝑢
−∞ ] = ∫ 𝐸𝐸 [ 1

𝑥𝑥1
𝜃𝜃 (𝑣𝑣−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] 𝑑𝑑𝑣𝑣𝑢𝑢
−∞ =

1
𝑥𝑥1

𝐸𝐸 [𝜃𝜃 (𝑣𝑣−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛
𝑖𝑖=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] (Using Fubini Theorem in order to change the order of 

integration) 
For x1 < 0 we proceed in the same way. 

2. 𝐸𝐸[𝑟𝑟𝑖𝑖| ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 = u𝑛𝑛
𝑗𝑗=1 ] = 𝐸𝐸[𝑟𝑟𝑖𝑖1{𝑋𝑋≤𝑢𝑢}]

𝑃𝑃[𝑋𝑋=𝑢𝑢] = lim
𝛿𝛿→0

𝛿𝛿−1𝐸𝐸[𝑟𝑟𝑖𝑖1{𝑢𝑢<𝑋𝑋<𝑢𝑢+𝛿𝛿}]
𝛿𝛿−1𝑃𝑃(𝑢𝑢<𝑋𝑋<𝑢𝑢+𝛿𝛿) =

𝜗𝜗
𝜗𝜗𝑢𝑢𝐸𝐸[𝑟𝑟𝑖𝑖1{𝑋𝑋≤𝑢𝑢}]

𝑓𝑓𝑋𝑋(𝑢𝑢) , 

where 𝑓𝑓𝑋𝑋(𝑢𝑢)>0   (2) 
Furthermore, we have: 
𝜕𝜕

𝜕𝜕𝑢𝑢 𝐸𝐸[𝑟𝑟𝑖𝑖1{𝑋𝑋≤𝑢𝑢}] = 𝜕𝜕
𝜕𝜕𝑢𝑢 𝐸𝐸[𝐸𝐸𝑟𝑟𝑖𝑖[1{𝑋𝑋≤𝑢𝑢}]|, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛] = 1

𝑥𝑥1
𝐸𝐸 [𝑟𝑟𝑖𝑖𝜃𝜃 (𝑢𝑢−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] (3) 

Substituting (1) and (3) in (2) we obtain (1.a) 
3. We can write the expression (1.a) and obtain (1.b) 
𝐸𝐸[𝑟𝑟𝑖𝑖| ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 = 𝑢𝑢𝑛𝑛

𝑗𝑗=1 ] = 𝐸𝐸 [𝑢𝑢−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛
𝑖𝑖=2
𝑥𝑥1

| ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 = 𝑢𝑢𝑛𝑛
𝑗𝑗=1 ]  

These are possible only for these assumptions of the conditional density 𝜃𝜃. 
For more see the work of Tasche (2000). 
Assumptions: 
1. For fixed 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛, the mapping 𝑡𝑡 ⟼ (𝑡𝑡, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛) is continuous in t. 
2. The map (𝑡𝑡, 𝑥𝑥) ⟼ 𝐸𝐸 [𝜃𝜃 (𝑢𝑢−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] is finite value and continuous. 

3. For i=2,...,n the mapping 𝐸𝐸 [𝑟𝑟𝑖𝑖𝜃𝜃 (𝑢𝑢−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛
𝑖𝑖=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] is finite value and 

continuous. 
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Applying these assumptions, Tasche (2000) gives the conditions for the partial 
differentiation with respect to the weights. 
Theorem 1 We assume that the distribution of the returns is formulated to guarantee 
the conditional density of 𝑟𝑟𝑖𝑖 given 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛, satisfying the above Assumptions in 
some open set 𝐻𝐻 ⊂ ℝ\{0} × ℝ𝑛𝑛−1 and that 𝑓𝑓𝑋𝑋(𝑞𝑞𝛼𝛼(𝑋𝑋)) > 0. Then 𝑞𝑞𝛼𝛼(𝑋𝑋) is partially 
differentiable with respect to each weight 𝑥𝑥𝑖𝑖 as follows: 

𝜕𝜕𝑞𝑞𝛼𝛼(𝑋𝑋)
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = 𝑞𝑞𝛼𝛼(𝑋𝑋)] 
Proof. Applying Lemma 1 the random variable 𝑋𝑋 = 𝑅𝑅′𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=1  has a continuous 
pdf conditional density of 𝑟𝑟1 given (𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛) as follow 

𝑓𝑓𝑋𝑋(𝑢𝑢) = 1
𝑥𝑥1

𝐸𝐸 [𝜃𝜃 (
𝑢𝑢 − ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛

𝑗𝑗=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] ∀𝑥𝑥 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑥𝑥𝑖𝑖 ≥ 0 

𝛼𝛼 = 𝑃𝑃[𝑋𝑋 ≤ 𝑞𝑞𝛼𝛼(𝑋𝑋)] =  𝐸𝐸 [∫ 𝜃𝜃(𝑣𝑣, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)𝑑𝑑𝑣𝑣
𝑞𝑞𝛼𝛼(𝑋𝑋)−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=2
𝑥𝑥1−∞ ] (4) 

Differentiating expression (1.4) with respect 𝑥𝑥𝑖𝑖 for i=2,..,n, we have: 

0 = 1
𝑥𝑥1

𝐸𝐸 [𝜃𝜃 (𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)]=𝑓𝑓𝑋𝑋(𝑢𝑢) (5) 

Solving (5) for 𝜕𝜕𝜕𝜕𝛼𝛼(𝑋𝑋)
𝜕𝜕𝑥𝑥𝑖𝑖

 and applying the Lemma 1, we find the result of Theorem 1: 
𝜕𝜕𝑞𝑞𝛼𝛼(𝑋𝑋)

𝜕𝜕𝑥𝑥𝑖𝑖
= 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = 𝑞𝑞𝛼𝛼(𝑋𝑋)] 

Note that 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) = −𝑞𝑞𝛼𝛼(𝑋𝑋) then we can write: 
𝜕𝜕𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
= −𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = −𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)] 

Applying to 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) the Euler decomposition we have 

𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) = ∑ 𝜕𝜕𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
= − ∑ 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = −𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)]

𝑛𝑛

𝑖𝑖=1
 

The calculation of the partial derivatives for the Value at Risk is needed for the partial 
derivatives of the Conditional Value at Risk. Indeed, be the definition of 𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) 
(Uryasev, 2000) we have 
𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) = 1

α ∫ 𝑉𝑉𝑉𝑉𝑅𝑅𝑣𝑣(𝑥𝑥)d𝑣𝑣α
0   (6) 

Thus, using the Assumption 1 and differentiating (6) we obtain that: 
𝜕𝜕𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
= 1

α ∫ 𝜕𝜕𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

d𝑣𝑣
α

0
= − 1

α ∫ 𝐸𝐸[𝑟𝑟𝑖𝑖|−𝑅𝑅′𝑥𝑥 = 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)]d𝑣𝑣 =
α

0
 

− 1
α ∫ 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑋𝑋 = 𝑞𝑞𝛼𝛼(𝑋𝑋)]d𝑣𝑣 =α

0 −  𝐸𝐸[𝑟𝑟𝑖𝑖|𝑋𝑋 ≤ −𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)] (7) 
The same result starting from the Expected shortfall 𝐸𝐸𝐸𝐸𝛼𝛼(𝑥𝑥),which is equivalent to 
the 𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥), as Tasche (2000) and Stefanovits (2010) showed in their work, under 
the condition that 𝐸𝐸[𝑋𝑋−] < ∞. 
The going to the definition of Risk Parity, the Total Risk contribution for each asset i 
of a portfolio is given by the following expression: 



27

Vol. 7 No. 3
October, 2023

European Journal of Economics, Law 
and Social Sciences

E-ISSN 2520-0429
ISSN 2519-1284

Applying these assumptions, Tasche (2000) gives the conditions for the partial 
differentiation with respect to the weights. 
Theorem 1 We assume that the distribution of the returns is formulated to guarantee 
the conditional density of 𝑟𝑟𝑖𝑖 given 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛, satisfying the above Assumptions in 
some open set 𝐻𝐻 ⊂ ℝ\{0} × ℝ𝑛𝑛−1 and that 𝑓𝑓𝑋𝑋(𝑞𝑞𝛼𝛼(𝑋𝑋)) > 0. Then 𝑞𝑞𝛼𝛼(𝑋𝑋) is partially 
differentiable with respect to each weight 𝑥𝑥𝑖𝑖 as follows: 

𝜕𝜕𝑞𝑞𝛼𝛼(𝑋𝑋)
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = 𝑞𝑞𝛼𝛼(𝑋𝑋)] 
Proof. Applying Lemma 1 the random variable 𝑋𝑋 = 𝑅𝑅′𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=1  has a continuous 
pdf conditional density of 𝑟𝑟1 given (𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛) as follow 

𝑓𝑓𝑋𝑋(𝑢𝑢) = 1
𝑥𝑥1

𝐸𝐸 [𝜃𝜃 (
𝑢𝑢 − ∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛

𝑗𝑗=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)] ∀𝑥𝑥 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑥𝑥𝑖𝑖 ≥ 0 

𝛼𝛼 = 𝑃𝑃[𝑋𝑋 ≤ 𝑞𝑞𝛼𝛼(𝑋𝑋)] =  𝐸𝐸 [∫ 𝜃𝜃(𝑣𝑣, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)𝑑𝑑𝑣𝑣
𝑞𝑞𝛼𝛼(𝑋𝑋)−∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖 𝑛𝑛

𝑖𝑖=2
𝑥𝑥1−∞ ] (4) 

Differentiating expression (1.4) with respect 𝑥𝑥𝑖𝑖 for i=2,..,n, we have: 

0 = 1
𝑥𝑥1

𝐸𝐸 [𝜃𝜃 (𝑢𝑢−∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗 𝑛𝑛
𝑗𝑗=2
𝑥𝑥1

, 𝑟𝑟2, . . . . . , 𝑟𝑟𝑛𝑛)]=𝑓𝑓𝑋𝑋(𝑢𝑢) (5) 

Solving (5) for 𝜕𝜕𝜕𝜕𝛼𝛼(𝑋𝑋)
𝜕𝜕𝑥𝑥𝑖𝑖

 and applying the Lemma 1, we find the result of Theorem 1: 
𝜕𝜕𝑞𝑞𝛼𝛼(𝑋𝑋)

𝜕𝜕𝑥𝑥𝑖𝑖
= 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = 𝑞𝑞𝛼𝛼(𝑋𝑋)] 

Note that 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) = −𝑞𝑞𝛼𝛼(𝑋𝑋) then we can write: 
𝜕𝜕𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
= −𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = −𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)] 

Applying to 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) the Euler decomposition we have 

𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) = ∑ 𝜕𝜕𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
= − ∑ 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑅𝑅′𝑥𝑥 = −𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)]

𝑛𝑛

𝑖𝑖=1
 

The calculation of the partial derivatives for the Value at Risk is needed for the partial 
derivatives of the Conditional Value at Risk. Indeed, be the definition of 𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) 
(Uryasev, 2000) we have 
𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥) = 1

α ∫ 𝑉𝑉𝑉𝑉𝑅𝑅𝑣𝑣(𝑥𝑥)d𝑣𝑣α
0   (6) 

Thus, using the Assumption 1 and differentiating (6) we obtain that: 
𝜕𝜕𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
= 1

α ∫ 𝜕𝜕𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

d𝑣𝑣
α

0
= − 1

α ∫ 𝐸𝐸[𝑟𝑟𝑖𝑖|−𝑅𝑅′𝑥𝑥 = 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)]d𝑣𝑣 =
α

0
 

− 1
α ∫ 𝐸𝐸[𝑟𝑟𝑖𝑖|𝑋𝑋 = 𝑞𝑞𝛼𝛼(𝑋𝑋)]d𝑣𝑣 =α

0 −  𝐸𝐸[𝑟𝑟𝑖𝑖|𝑋𝑋 ≤ −𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥)] (7) 
The same result starting from the Expected shortfall 𝐸𝐸𝐸𝐸𝛼𝛼(𝑥𝑥),which is equivalent to 
the 𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑥𝑥), as Tasche (2000) and Stefanovits (2010) showed in their work, under 
the condition that 𝐸𝐸[𝑋𝑋−] < ∞. 
The going to the definition of Risk Parity, the Total Risk contribution for each asset i 
of a portfolio is given by the following expression: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥)(𝑥𝑥) = 𝑥𝑥𝑖𝑖

𝜕𝜕𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

 

The expression in case of continuous returns distribution is the following: 
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥)(𝑥𝑥) = −𝑥𝑥𝑖𝑖𝐸𝐸[𝑟𝑟𝑖𝑖|𝑋𝑋 ≤ −𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥)] 

𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥) = ∑  𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥)(𝑥𝑥)

𝑛𝑛

𝑖𝑖=1
= − ∑  𝑥𝑥𝑖𝑖𝐸𝐸[𝑟𝑟𝑖𝑖|𝑋𝑋 ≤ −𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥)]

𝑛𝑛

𝑖𝑖=1
 

Since Risk Parity equalizes the total risk contributions: 
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖(𝑥𝑥) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗(𝑥𝑥) ∀ 𝑖𝑖 , 𝑗𝑗  

The Risk Parity model can be formulated as the following optimization problem: 

𝑥𝑥∗ = arg min ∑ ∑(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖(𝑥𝑥) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗(𝑥𝑥) )2
𝑛𝑛

𝑗𝑗=1
 

𝑛𝑛

𝑖𝑖=1
 

∑ 𝑥𝑥𝑖𝑖 = 1 
𝑛𝑛

𝑖𝑖=1
 

𝑥𝑥 ≥ 0 
We will apply Risk Parity to the standard deviation and to Conditional Value at Risk 
in equal conditions: same starting points in the algorithms and with no short selling 
or no possibility to leverage, using historical scenarios of assets returns. 
For the approximation using times series of observation with weekly or daily data, 
where the i-th asset return ri consist of T number outcomes rji with i=1,.....,n and 
j=1,...,T. For each portfolio 𝑥𝑥 ∈ ℝ𝑛𝑛 where n is the number of assets in the market, the 
vector of the observed portfolio returns is 𝑇𝑇𝑃𝑃 = (𝑟𝑟𝑝𝑝1, … . . , 𝑟𝑟𝑝𝑝𝑝𝑝) where: 
𝑟𝑟𝑝𝑝𝑗𝑗 = 𝑥𝑥′𝑟𝑟𝑗𝑗 with j=1,....,T where 𝑟𝑟𝑗𝑗  = (𝑟𝑟𝑗𝑗1, … . . , 𝑟𝑟𝑗𝑗𝑝𝑝). 
For a high number of observation T with weekly or daily data, we can apply the Law 
of Large Numbers for the numerical approximation of the empirical distribution of 
the historical portfolio return: 

𝑃𝑃(𝑇𝑇𝑃𝑃 ≤ 𝑦𝑦) ≈ #(𝑗𝑗 = 1, … . , 𝑇𝑇|𝑟𝑟𝑝𝑝1 ≤ 𝑦𝑦)
𝑇𝑇  

Therefore, we compute the 𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥) and 𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥) of portfolio returns as follows: 
𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥) ≈ −𝑟𝑟p⌊αT⌋

sorted 

𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥) ≈ − 1
αT ∑ 𝑟𝑟p j

sorted
⌊αT⌋

j=1
 

where α is a specified significance level and rp j
sortedare the sorted portfolio returns that 

satisfy 
𝑟𝑟𝑝𝑝 1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑟𝑟𝑝𝑝 2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ ⋯ 𝑟𝑟𝑝𝑝 𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ ⋯ ≤ 𝑟𝑟𝑝𝑝 𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Using time series observation, from (4) the approximation of the partial derivatives 
𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥) for each asst i becomes: 
𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
≈ − 1

αT ∑ 𝑟𝑟k i
sorted⌊αT⌋

k=1   i=1,...,n 
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 and then the total risk contribution of asset i is 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑥𝑥)(𝑥𝑥) = 𝑥𝑥𝑖𝑖

𝜕𝜕𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝛼𝛼(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

≈ − 1
⌊αT⌋ 𝑥𝑥𝑖𝑖 ∑ 𝑟𝑟k i

sorted
⌊αT⌋

k=1
 

 
in which 𝑟𝑟k i

sorted are the pertinent returns of asset i to the sorted portfolio returns. This 
method was suggested by Stefanovits (2010) in his master thesis, where he applies 
the equally risk contribution in case of standardized multivariate distribution, using 
a Gaussian kernel estimation. He implemented Risk Parity approach to Expected 
Shortfall assuming normally or t-student data in a parametric approach. In this paper 
we will take in consideration only the time series analysis.  
The Matlab code for the computation, we mention with gratitude that we start from 
the work of (Moussaoui Farid), in which he applies Risk Parity at standard deviation 
in a form of equally risk contribution and in the same way we apply it to Conditional 
value at risk by adapting the code. The method is to minimize the distance between 
the total risk contributions in a large-scale optimization. Since the code is long, we 
are not putting it as an appendix. 
For the diversification measure we measure the following. Consider a portfolio x = 
(x1, x2,.....,xn) satisfying the budget constraint ∑ 𝑥𝑥𝑖𝑖 𝑛𝑛

𝑖𝑖=1 = 1 with short sales not allowed 
(𝑥𝑥𝑖𝑖 ≥ 0) . The first naive diversification measure is the Herfindal index: 

𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻 = 1 − 𝑥𝑥𝑥𝑥′ 
which takes the value 0 if the portfolio is concentrated in one asset and the maximum 
value 1 − 1

𝑛𝑛 for the equally weighted (or naive) portfolio. 
For only strategies 𝑥𝑥𝑖𝑖 ≥ 0, we introduce the measure proposed by Bera and Park 
(Bera, Park ,2004). 
This diversification measure can be interpreted as the probability of each weight 
measure in terms of entropy: 

𝐷𝐷𝐵𝐵𝐵𝐵 = − ∑ 𝑥𝑥𝑖𝑖log (𝑥𝑥𝑖𝑖) 
𝑛𝑛

𝑖𝑖=1
= ∑ 𝑥𝑥𝑖𝑖log ( 1

𝑥𝑥𝑖𝑖
) 

𝑛𝑛

𝑖𝑖=1
 

The 𝐷𝐷𝐵𝐵𝐵𝐵 takes value between 0 (fully concentrated in one asset) and log(n) for the 
naive portfolio. 
 
Another index of diversification based on the weights that compose the portfolio has 
been proposed by Hannah and Kay: 

𝐷𝐷𝐻𝐻𝐻𝐻
𝛼𝛼 = − (∑ 𝑥𝑥𝑖𝑖

𝛼𝛼
𝑛𝑛

𝑖𝑖=1
)

1
𝛼𝛼−1

 

 
For all 𝛼𝛼 > 0. It is easy to verify that 𝐷𝐷𝐻𝐻𝐻𝐻

2 =𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻 − 1. 
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For all 𝛼𝛼 > 0. It is easy to verify that 𝐷𝐷𝐻𝐻𝐻𝐻

2 =𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻 − 1. 

These three quantities represent diversification only in terms of capital invested and 
do not take into account that assets contribute differently to the total portfolio 
volatility. 
Another useful index for estimating transaction costs, is the turnover of the portfolio: 
𝑇𝑇𝑇𝑇 = ∑ |𝑥𝑥𝑖𝑖𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑡𝑡|𝑛𝑛

𝑖𝑖=1 , 
where 𝑥𝑥𝑖𝑖𝑡𝑡 denotes the weight of asset i at time t. 
 
3. Results 
In this case we show a mixed portfolio composed with 26 stocks selected from the 
DAX30, 9 government bonds and 2 commodities (silver and gold) see Fig.1 . We 
choose a different frequency of data (weekly) and consider the period from January 
2000 to December 2013 for the above assets. We do the same analysis for the mixed 
portfolio creating a rolling time window of 4 years in sample period (208 weekly 
observations data, in this case, to guarantee the convergence of the model) and 
rebalancing every month (4 week out of sample). The level of the Conditional Value 
at Risk is 10% for a better approximation. 

 
Fig.1 The chart of the mixed portfolio composure 

Similar to the method of 60/40 composition introduced at the very beginning by 
(Qian, 2005) which is the first creation of the Risk Parity strategies, these portfolios 
not only are well diversified but also outperform the other models. The numerical 
approximation in this case is applied to weekly observation, so it requires a larger 
period of the in-sample period, in order for the model to converge. The Risk Parity 
with Conditional Value at Risk is measured at level of 10% and it perform better that 
the other models in terms of compound return and Sharpe ration Sσ. 
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Table 1. The performance of the mixed portfolio. 
 

  R.P. -STD  M-V R.P. CVaR N. R.P. CVaR CVaR (10%)   Naive 
μ(%)  0.1142  0.0990 0.1059    0.1149    0.0881    0.119 
μann (%) 6.1136  5.2819 5.6559   6.1508   4.6878   6.397 
 
μc(%)  72.7785  65.8115 69.4239   76.1627   56.5337  

 64.88 
σ (%)  9.5905  4.2540 6.7611   7.8331   4.4818    15.36 
Sσ  0.6375  1.2416 0.8365   0.7852   1.046  0.4163 

 
When we created a mixed portfolio selecting among stocks from DA30, 26 stocks, 9 
government bonds, and 2 commodities (silver & gold). Similar to the method of 60/40 
composition introduced at the very beginning by (Qian, 2005) which is the first 
creation of the Risk Parity strategies, these portfolios not only are well diversified but 
also outperform the other models. The numerical approximation in this case is 
applied to weekly observation, so it requires a larger period of the in-sample period, 
in order for the model to converge. The Risk Parity with Conditional Value at Risk is 
measured at level of 10% and it perform better that the other models in terms of 
compound return and Sharpe ration Sσ. 

  
 Figure 2. The compound returns of the portfolios in the out of sample period 
The Risk Parity with CVaR performs better compared to the other model, especially 
during the 2018 crisis and start gaining more after it. The Mean Variance and the 
CVaR are at its minimum risk, although they have an increase trending after the 2008 
crisis. 
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 Figure 2. The compound returns of the portfolios in the out of sample period 
The Risk Parity with CVaR performs better compared to the other model, especially 
during the 2018 crisis and start gaining more after it. The Mean Variance and the 
CVaR are at its minimum risk, although they have an increase trending after the 2008 
crisis. 

To measure the riskiness of the portfolios, we can use the volatility (standard 
deviation) or the Conditional value at risk at each end of the holding period. 

 

 
Fig.3 The volatility and the CVaR of the portfolios 

The riskiness in terms of volatility and CVaR of the Risk parity models is in between 
the Naïve and the CVaR and Mean variance models. There is no significant difference 
between risk parity with CVaR and the standard deviation. 
Considering only a commodities market as elements of our portfolio, we will have a 
problem in high volatility, for that there is a need to study particular models to assign 
capitals invested in commodities. For this if we use models like the Markowitz model, 
we will have higher drawdowns if the market moves in decreasing direction, due to 
the higher concentration. The Risk parity model are more suitable if the set of 
selection in relatively small (10-15 assets) since they take significative proportion of 
each weight. For daily frequency data, the Risk Parity model with CVaR converges 
and the approximation is quite satisfying, in a limited number of iterations. The last 
to discuss is the diversification and the portfolio turnover. 
 
Table 2 The average portfolio turnover: 
 RP-Std M-V RP-CVaR Naive RP-CVaR   CVaR 
Average T-O(%) 0.1985 0.8762 0.3166 0.0387 0.8449 
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Mean Variance and CVaR have the highest portfolio turnover. Even if we show it 
graphically (fig. 4) we notice that Risk Parity with CVaR have the lowest turnover, 
thus less cost of transaction in case of buying or selling the assets. 

 
Fig.4 The portfolio turnover in each recalibration 

For the Diversification we show the Bera Park Index, the herfindal index, and the 
number of assets selected. The fist part of the Fig.5 shows the Bera Park index, and it 
is easy to see that the risk parity models have higher values, thus better diversification 
and less concentration. In the same logic we have the Herfindal Index, in which Mean 
Variance and CVaR are focused in a small number of assets. In the bottom graph is 
shown the number of assets that changes significantly from each model. 

 

 
Fig.5 The Bera Park Index/ The herfindal index / No of assets in the selection 
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4. Conclusion 
 
In this paper we introduced the numerical approximation method for using the Risk 
Parity with Conditional Value at Risk in the portfolio selection. We gave the needed 
conditions for the calculation of the partial derivatives in the process for the 
formulation of the Risk Parity. After that we showed the required condition for the 
numerical approximation. 
The Risk Parity portfolio with Expected shortfall or Conditional Value at Risk will 
have a linear function as measure of risk, in the optimization, compared to the Risk 
Parity used mostly in literature (standard deviation). The time of the computation in 
the same condition (using the same machine) is sensitively reduced.  
From the performance point of view, the Risk Parity with Conditional Value at risk 
in most cases is similar, and not with a significative difference with the Risk Parity 
with standard deviation. To prove this, we choose a mixed portfolio with stocks, 
bonds and commodities, the performance of the Risk Parity with Conditional Value 
at Risk holds better during the impact of 2008 financial crisis and recover faster in the 
time after it in terms of compound return. This portfolio is diversified in the initial 
set of possible choices at the beginning, when we apply the risk parity model, we 
have a benefit in the well diversification. 
In conclusion, the risk parity model is a good tradeoff between the minimum risk 
models and the naïve portfolios, for medium average portfolios. With the numerical 
computation it is better in case we have a high frequency, like daily observations, to 
have a better approximation. Using the Conditional Value at Risk, we might pass to 
a coherent measure, and use its benefits. 
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